61 research outputs found

    Everything is Connected: Graph Neural Networks

    Full text link
    In many ways, graphs are the main modality of data we receive from nature. This is due to the fact that most of the patterns we see, both in natural and artificial systems, are elegantly representable using the language of graph structures. Prominent examples include molecules (represented as graphs of atoms and bonds), social networks and transportation networks. This potential has already been seen by key scientific and industrial groups, with already-impacted application areas including traffic forecasting, drug discovery, social network analysis and recommender systems. Further, some of the most successful domains of application for machine learning in previous years -- images, text and speech processing -- can be seen as special cases of graph representation learning, and consequently there has been significant exchange of information between these areas. The main aim of this short survey is to enable the reader to assimilate the key concepts in the area, and position graph representation learning in a proper context with related fields.Comment: To appear in Current Opinion in Structural Biology. 14 pages, 1 figur

    X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets

    Full text link
    In this paper we propose cross-modal convolutional neural networks (X-CNNs), a novel biologically inspired type of CNN architectures, treating gradient descent-specialised CNNs as individual units of processing in a larger-scale network topology, while allowing for unconstrained information flow and/or weight sharing between analogous hidden layers of the network---thus generalising the already well-established concept of neural network ensembles (where information typically may flow only between the output layers of the individual networks). The constituent networks are individually designed to learn the output function on their own subset of the input data, after which cross-connections between them are introduced after each pooling operation to periodically allow for information exchange between them. This injection of knowledge into a model (by prior partition of the input data through domain knowledge or unsupervised methods) is expected to yield greatest returns in sparse data environments, which are typically less suitable for training CNNs. For evaluation purposes, we have compared a standard four-layer CNN as well as a sophisticated FitNet4 architecture against their cross-modal variants on the CIFAR-10 and CIFAR-100 datasets with differing percentages of the training data being removed, and find that at lower levels of data availability, the X-CNNs significantly outperform their baselines (typically providing a 2--6% benefit, depending on the dataset size and whether data augmentation is used), while still maintaining an edge on all of the full dataset tests.Comment: To appear in the 7th IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 8 pages, 6 figures. Minor revisions, in response to reviewers' comment

    Parallel Algorithms Align with Neural Execution

    Full text link
    Neural algorithmic reasoners are parallel processors. Teaching them sequential algorithms contradicts this nature, rendering a significant share of their computations redundant. Parallel algorithms however may exploit their full computational power, therefore requiring fewer layers to be executed. This drastically reduces training times, as we observe when comparing parallel implementations of searching, sorting and finding strongly connected components to their sequential counterparts on the CLRS framework. Additionally, parallel versions achieve strongly superior predictive performance in most cases.Comment: 8 pages, 5 figures, To appear at the KLR Workshop at ICML 202
    • ā€¦
    corecore